
Structured State-space Models
EPFL- EECI PhD School 2025

Leonardo Massai⋆

l.massai@epfl.ch

Ecole Polytechnique Fédérale de Lausanne⋆



Structured State-space Models
State Space Models
What is an SSM?
An SSM is an input/output operator defined through a dynamical system consisting of multiple layers, each
composed of
• A discrete-time LTI system. It can be discretized from a CT or directly modeled in DT.
• A pre- and post-processing of its input and output, typically involving static nonlinear function (Wiener

models). All the processing done around the LTI system is also known as the SSM scaffolding.

Example of SSM structure (LRU)
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SSM structure
Input/output operator M : u ∈ Lnu 7→ y ∈ Lny

• LTI system:

g(A,B,C,D) :
{
xk+1 = Axk +Bdk, x0 = 0
zk = Cxk +Ddk ,

with h ∈ Rnh , d, z ∈ Rn. A common requirement is that A must be Schur, ensuring system stability (ISS).
• The output of g is fed to a static nonlinearity that belongs to a family of parametrized functions
σξ : Rn 7→ Rn depending on the parameter ξ ∈ Rm.

• The scaffolding commonly includes a linear encoder/decoder defined by the matrices
E ∈ Rn×nu , H ∈ Rny×n. These are just linear transformations of the form y = Eu.3 3.4.2025



Structured State-space Models
The LRU
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LRU
• For a fixed number of layers r ∈ N, the LRU is a parametrized operator Mθ : u ∈ Lnu 7→ y ∈ Lny with:

θ ∈ P = {{Ai, Bi, Ci, Di, ξi}1≤i≤r, E,H}

• An LRU a with r ∈ N layers processes its input u in the following manner:

(encoder) y0 = Eu
(SSL) yi = σi (gi(yi−1)) + yi−1, 1 ≤ i ≤ r

(decoder) y = Hyr
aResurrecting Linear Recurrences, Orvieto et al., 2023
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Structured State-space Models
LTI Systems

Why LTI systems?
1 Output can be computed both recursively (during inference) and via convolution:
zk =

∑k−1
τ=0 CA

k−τ−1Bdτ +Ddk allowing parallelization and fast computing during training (parallel scan).
2 Properties such as stability are easy to enforce.

Enforcing stability: complex diagonal parametrization
• We want to parametrize Schur matrices A ∈ Rnh×nh . A convenient way to do it is to use diagonal

complex-valued matrices.
• Almost all matrices A ∈ Rnh×nh are diagonalizable over C.
• Given a diagonalizable A we can write A = PΛP−1 and construct the similar system with state
x̃k := P−1xk, B̃ := P−1B and output z̃k = C̃x̃k +Ddk = Cxk +Ddk = zk where C̃ := CP .

• This implies that instead of learning (A,B,C,D), one can learn (Λ, B̃, C̃,D), where Λ, B̃, C̃ are
complex-valued, and Λ is diagonal.
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Structured State-space Models
LTI systems

A formulation with Λ with conjugate pairs
• When A is of even dimension with complex conjugate pairs of eigenvalues, one can write:

Λ =
[

Λ̄
conj(Λ̄)

]
, B̃ =

[
B̄

conj(B̄)

]
, C̃ = [C̄ conj(C̄)]

where Λ̄ ∈ Cnλ×nλ , B̄ ∈ Cnλ×n, C̄ ∈ Cnz×nλ , while D ∈ Rnz×n, with nλ = nh
2 .

• Substituting you get [
x̄k+1

conj(x̄k+1)

]
=

[
Λx̄k

conj(Λx̄k)

]
+

[
B̄uk

conj(B̄)uk

]
(1)

zk = C̄x̄k + conj(C̄x̃k) +Duk = 2Re(C̄x̄k) +Duk (2)

• We can train the smaller subsystem (Λ̄, B̄, C̄) and compute the output as zk = 2Re(z̄k) +Duk for further
reduction of the computational burden without any approximations.

• Parameterize Λ̄ = diag (λ1, . . . , λnλ ) with λj = e−eµj
eθji ensuring |λj | = e−eµj

< 1 ∀ µj ∈ R .
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Structured State-space Models
Initialization
Initialization Strategies
• All parameterizations aim to ensure that |λj | < 1 and |λj | ≈ 1 to push the system towards marginal stability.

Intuitively, this allows the system to have long-range memory and prevents the signal from past inputs from
quickly dying out.

Towards marginal stability for long dependencies
• The idea is to constrain the eigenvalues to lie on a disc inside the unitary circle and close to the stability

boundary.
• Let u1, u2 be independent uniform random variables on the interval [0, 1]. Let 0 ≤ rmin ≤ rmax ≤ 1.

Compute ν = − 1
2 log

(
u1

(
r2

max − r2
min

)
+ r2

min
)

and α = 2πu2. Then exp(−ν + iα) is uniformly distributed
on the ring in C between circles of radii rmin and rmax.
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Structured State-space Models
Recap SSM (LRU)
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• LTI system in the SSL layer:

From
{
xk+1 = Ahk +Bdk

zk = Chk +Ddk,
to


x̃k+1 = Λ̄x̃k + B̄dk

z̃k = C̄x̃k

zk = 2Re(z̃k) +Ddk

with Λ̄ =

e
−eµ1

eθ1i

. . .
e−eµnλ eθnλ

i


where Λ̄ ∈ Cnλ×nλ , B̄ ∈ Cnλ×nu , C̄ ∈ Cny×nλ , while D ∈ Rnη×nu , with nλ = nx

2

• Training parameters: Θ =
{{

Λ̄j , B̄j , C̄j , Dj , ξi
}
j∈{1,...,r}

, E,H
}

• Hyperparameters: n, nx, r, hyper(σ)
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Structured State-space Models
Computational efficiency

{
xk+1 = Axk + Bdk, x0 = 0
zk = Cxk + Ddk,

xk+1 =
k∑

j=0
AjBdk−j = (K ⋆ d)k , k = 0, . . . , T − 1

where K =
[
B, AB, . . . , AT −2B, AT −1B

]
is called kernel and the convolution operator for causal

sequences f, g of length T is defined as

(f ⋆ g)k =
T −1∑
j=0

fjgk−j =
k∑

j=0
fjgk−j , (gi = 0 for i < 0)

Convolutions can be parallelized:
• x1 = Bd0

• x2 = ABd0 +Bd1 (does not depend on x1)
• x3 = A2Bd0 +ABd1 +Bd2 (does not depend on x1, x2)
• . . .

Given the input sequence d0, d1, . . . , dT −1, the whole trajectory x1, x2 . . . , xT can be computed in one
shot once the kernel K is materialized.
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Computational efficiency

(K ⋆ d)0 =
2∑

j=0
Kjd−j = K0d0 + K1d−1 + K2d−2

A2B AB B

0 0 d0 d1 d2

multiply

sum

x1 = Bd0

k = 0
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Structured State-space Models
Computational efficiency

(K ⋆ d)1 =
2∑

j=0
Kjd1−j = K0d1 + K1d0 + K2d−1

A2B AB B

0 0 d0 d1 d2

multiply

sum

x2 = ABd0 + Bd1

k = 1
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Structured State-space Models
Computational efficiency

(K ⋆ d)2 =
2∑

j=0
Kjd2−j = K0d2 + K1d1 + K2d0

A2B AB B

0 0 d0 d1 d2

multiply

sum

x3 = A2Bd0 + ABd1 + Bd2

k = 2
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Structured State-space Models
Computational efficiency

Convolutional form and parallel scan
• The elements of K =

[
B,AB, . . . , AT−2B,AT−1B

]
can be computed in parallel.

• This can be done via parallel scan: given a binary associative operator • (i.e. (a • b) • c = a • (b • c) ) and a
sequence [a1, a2, . . . , aL] a scan operation (sometimes referred to as all-prefix-sum) returns the sequence

[a1, (a1 • a2) , . . . , (a1 • a2 • . . . • aL)]

• The complexity of simulating a DT LTI system for a sequence of inputs of length T is O (T log2 T ) times the
complexity of the product Λ · Λ. (for Λ diagonal it scales as O (nλ), for non-diagonal matrices its complexity
is O

(
n2.3737
λ

)
).
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Structured State-space Models
Scaffoldings

Is linear enough? Scaffolding to the rescue
• Expressiveness of linear systems is enhanced by pre- and post-processing the input/output via static linear and

non-linear transformations. This process is called scaffolding.

Linear/Nonlinear
Map

Linear/Nonlinear
Map

SSM 2SSM 1

Linear/Nonlinear
Map

• All maps are static and applied element-wise. Non-linearities should be Lipschitz continuous to preserve
stability properties.
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Scaffoldings

Figure: Griffin Scaffolding.
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SSMs architecture

A taxonomy of SSMs
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Performance

Figure: SSMs performance.
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Structured State-space Models
SSMs with prescribed L2-bound γ

• What if we want to impose something "more" than stability and we want a prescribed L2-bound?

L2RU: SSMs with prescribed L2-bound γ 1

1 We can parametrize DT LTI systems with prescribed L2-bound γ using the Real Bounded Lemma:

g(A,B,C,D) has L2-gain γ ⇐⇒ P ≻ 0,
[
A⊤PA− P + C⊤C A⊤PB + C⊤D

B⊤PA+D⊤C B⊤PB +D⊤D − γ2I

]
≺ 0

2 Then, we can use the knowledge of the Lipschitz constant of each nonlinearity and encoder/decoder matrices
to find a free parametrization such that the SSM operator M has prescribed bound γ̂

L2RU parametrization: ψ : θ ∈ Rm 7→ {{Ai, Bi, Ci, Di︸ ︷︷ ︸
gi

, ξi︸︷︷︸
σi

}1≤i≤r, E,H} s.t. Mψ(θ) has L2-bound γ̂.

• Find out more at https://arxiv.org/abs/2503.23818

1Free Parametrization of L2-bounded State Space Models, Leonardo Massai, Giancarlo Ferrari-Trecate, 2025
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