

Structured State-space Models

EPFL- EECI PhD School 2025

Leonardo Massai*

l.massai@epfl.ch

Ecole Polytechnique Fédérale de Lausanne*

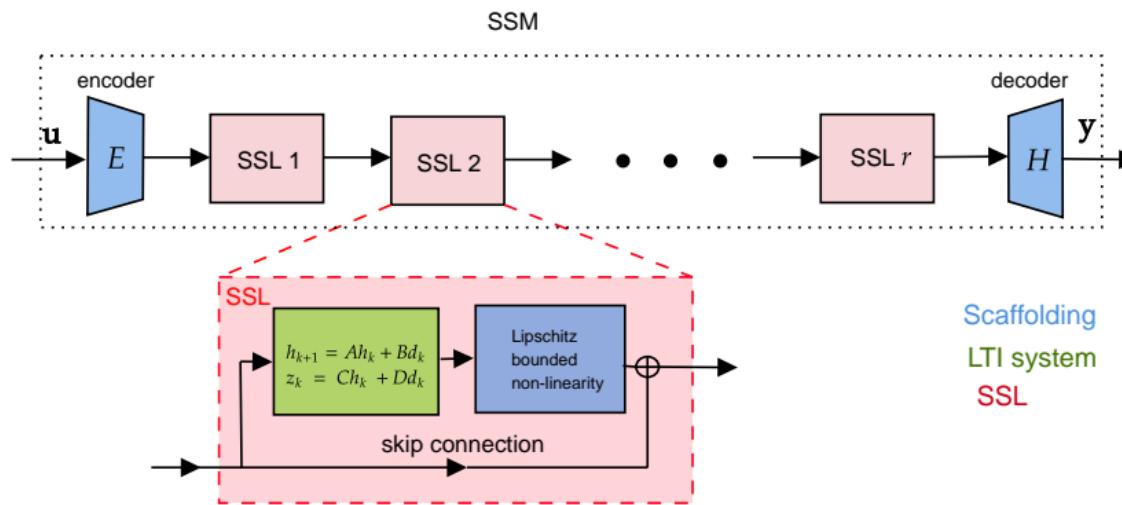
EPFL

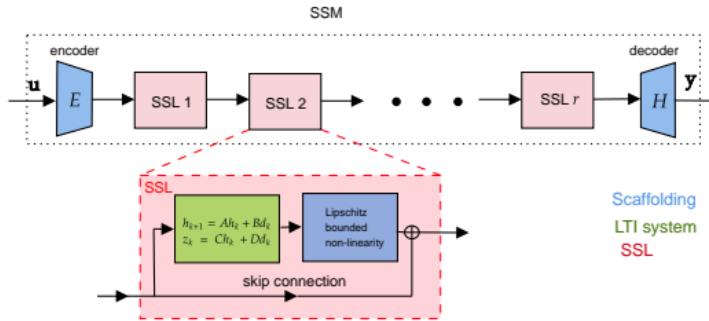
What is an SSM?

An SSM is an input/output operator defined through a dynamical system consisting of multiple layers, each composed of

- A **discrete-time LTI system**. It can be discretized from a CT or directly modeled in DT.
- A pre- and post-processing of its input and output, typically involving **static nonlinear function** (Wiener models). All the processing done around the LTI system is also known as the **SSM scaffolding**.

Example of SSM structure (LRU)





SSM structure

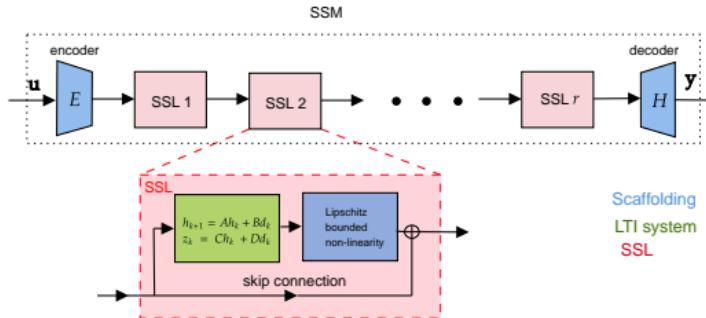
Input/output operator $\mathcal{M} : \mathbf{u} \in \mathcal{L}^{n_u} \mapsto \mathbf{y} \in \mathcal{L}^{n_y}$

- **LTI system:**

$$g_{(A,B,C,D)} : \begin{cases} x_{k+1} &= Ax_k + Bd_k, \quad x_0 = 0 \\ z_k &= Cx_k + Dd_k, \end{cases}$$

with $h \in \mathbb{R}^{n_h}$, $d, z \in \mathbb{R}^n$. A common requirement is that A must be Schur, ensuring system stability (ISS).

- The output of g is fed to a **static nonlinearity** that belongs to a family of parametrized functions $\sigma_\xi : \mathbb{R}^n \mapsto \mathbb{R}^n$ depending on the parameter $\xi \in \mathbb{R}^m$.
- The **scaffolding** commonly includes a linear encoder/decoder defined by the matrices³ $E \in \mathbb{R}^{n \times n_u}$, $H \in \mathbb{R}^{n_y \times n}$. These are just linear transformations of the form $\mathbf{y} = E\mathbf{u}$.



LRU

- For a fixed number of layers $r \in \mathbb{N}$, the LRU is a parametrized operator $\mathcal{M}_\theta : \mathbf{u} \in \mathcal{L}^{n_u} \mapsto \mathbf{y} \in \mathcal{L}^{n_y}$ with:

$$\theta \in \mathcal{P} = \{\{A_i, B_i, C_i, D_i, \xi_i\}_{1 \leq i \leq r}, E, H\}$$

- An LRU ^a with $r \in \mathbb{N}$ layers processes its input \mathbf{u} in the following manner:

(encoder)

$$\mathbf{y}_0 = E\mathbf{u}$$

(SSL)

$$\mathbf{y}_i = \sigma_i(g_i(\mathbf{y}_{i-1})) + \mathbf{y}_{i-1}, \quad 1 \leq i \leq r$$

(decoder)

$$\mathbf{y} = H\mathbf{y}_r$$

^aResurrecting Linear Recurrences, Orvieto et al., 2023

Why LTI systems?

- 1 Output can be computed both recursively (during inference) and via convolution:

$z_k = \sum_{\tau=0}^{k-1} CA^{k-\tau-1} Bd_{\tau} + Dd_k$ allowing parallelization and **fast computing** during training (parallel scan).

- 2 Properties such as **stability** are easy to enforce.

Enforcing stability: complex diagonal parametrization

- We want to parametrize Schur matrices $A \in \mathbb{R}^{n_h \times n_h}$. A convenient way to do it is to use diagonal complex-valued matrices.
- Almost all matrices $A \in \mathbb{R}^{n_h \times n_h}$ are diagonalizable over \mathbb{C} .
- Given a diagonalizable A we can write $A = P\Lambda P^{-1}$ and construct the similar system with state $\tilde{x}_k := P^{-1}x_k$, $\tilde{B} := P^{-1}B$ and output $\tilde{z}_k = \tilde{C}\tilde{x}_k + Dd_k = Cx_k + Dd_k = z_k$ where $\tilde{C} := CP$.
- This implies that instead of learning (A, B, C, D) , one can learn $(\Lambda, \tilde{B}, \tilde{C}, D)$, where $\Lambda, \tilde{B}, \tilde{C}$ are complex-valued, and Λ is diagonal.

A formulation with Λ with conjugate pairs

- When A is of even dimension with complex conjugate pairs of eigenvalues, one can write:

$$\Lambda = \begin{bmatrix} \bar{\Lambda} & \\ & \text{conj}(\bar{\Lambda}) \end{bmatrix}, \quad \tilde{B} = \begin{bmatrix} \bar{B} \\ \text{conj}(\bar{B}) \end{bmatrix}, \quad \tilde{C} = [\bar{C} \ \text{conj}(\bar{C})]$$

where $\bar{\Lambda} \in \mathbb{C}^{n_\lambda \times n_\lambda}$, $\bar{B} \in \mathbb{C}^{n_\lambda \times n}$, $\bar{C} \in \mathbb{C}^{n_z \times n_\lambda}$, while $D \in \mathbb{R}^{n_z \times n}$, with $n_\lambda = \frac{n_h}{2}$.

- Substituting you get

$$\begin{bmatrix} \bar{x}_{k+1} \\ \text{conj}(\bar{x}_{k+1}) \end{bmatrix} = \begin{bmatrix} \Lambda \bar{x}_k \\ \text{conj}(\Lambda \bar{x}_k) \end{bmatrix} + \begin{bmatrix} \bar{B} u_k \\ \text{conj}(\bar{B}) u_k \end{bmatrix} \quad (1)$$

$$z_k = \bar{C} \bar{x}_k + \text{conj}(\bar{C} \tilde{x}_k) + D u_k = 2\mathcal{R}e(\bar{C} \bar{x}_k) + D u_k \quad (2)$$

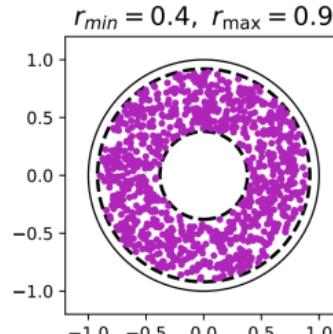
- We can train the smaller subsystem $(\bar{\Lambda}, \bar{B}, \bar{C})$ and compute the output as $z_k = 2\mathcal{R}e(\bar{z}_k) + D u_k$ for further reduction of the computational burden without any approximations.
- Parameterize $\bar{\Lambda} = \text{diag}(\lambda_1, \dots, \lambda_{n_\lambda})$ with $\lambda_j = e^{-e^{\mu_j}} e^{\theta_j i}$ ensuring $|\lambda_j| = e^{-e^{\mu_j}} < 1 \forall \mu_j \in \mathbb{R}$.

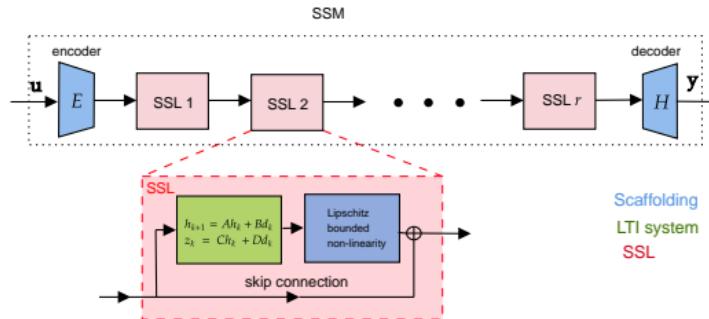
Initialization Strategies

- All parameterizations aim to ensure that $|\lambda_j| < 1$ and $|\lambda_j| \approx 1$ to push the system towards marginal stability. Intuitively, this allows the system to have long-range memory and prevents the signal from past inputs from quickly dying out.

Towards marginal stability for long dependencies

- The idea is to constrain the eigenvalues to lie on a disc inside the unitary circle and close to the stability boundary.
- Let u_1, u_2 be independent uniform random variables on the interval $[0, 1]$. Let $0 \leq r_{\min} \leq r_{\max} \leq 1$. Compute $\nu = -\frac{1}{2} \log(u_1(r_{\max}^2 - r_{\min}^2) + r_{\min}^2)$ and $\alpha = 2\pi u_2$. Then $\exp(-\nu + i\alpha)$ is uniformly distributed on the ring in \mathbb{C} between circles of radii r_{\min} and r_{\max} .





- LTI system in the SSL layer:

$$\text{From } \begin{cases} x_{k+1} = Ah_k + Bd_k \\ z_k = Ch_k + Dd_k, \end{cases} \text{ to } \begin{cases} \tilde{x}_{k+1} = \bar{\Lambda}\tilde{x}_k + \bar{B}d_k \\ \tilde{z}_k = \bar{C}\tilde{x}_k \\ z_k = 2\mathcal{R}e(\tilde{z}_k) + \bar{D}d_k \end{cases} \text{ with } \bar{\Lambda} = \begin{bmatrix} e^{-e^{\mu_1}} e^{\theta_1 i} & & \\ & \ddots & \\ & & e^{-e^{\mu_n}} e^{\theta_n i} \end{bmatrix}$$

where $\bar{\Lambda} \in \mathbb{C}^{n_\lambda \times n_\lambda}$, $\bar{B} \in \mathbb{C}^{n_\lambda \times n_u}$, $\bar{C} \in \mathbb{C}^{n_y \times n_\lambda}$, while $D \in \mathbb{R}^{n_\eta \times n_u}$, with $n_\lambda = \frac{n_x}{2}$

- Training parameters: $\Theta = \left\{ \left\{ \bar{\Lambda}_j, \bar{B}_j, \bar{C}_j, D_j, \xi_j \right\}_{j \in \{1, \dots, r\}}, E, H \right\}$
- Hyperparameters: $n, n_x, r, \text{hyper}(\sigma)$

$$\begin{cases} x_{k+1} &= Ax_k + Bd_k, x_0 = 0 \\ z_k &= Cx_k + Dd_k, \end{cases} \quad x_{k+1} = \sum_{j=0}^k A^j Bd_{k-j} = (\mathcal{K} \star d)_k, \quad k = 0, \dots, T-1$$

where $\mathcal{K} = [B, AB, \dots, A^{T-2}B, A^{T-1}B]$ is called kernel and the convolution operator for causal sequences f, g of length T is defined as

$$(f \star g)_k = \sum_{j=0}^{T-1} f_j g_{k-j} = \sum_{j=0}^k f_j g_{k-j}, \quad (g_i = 0 \text{ for } i < 0)$$

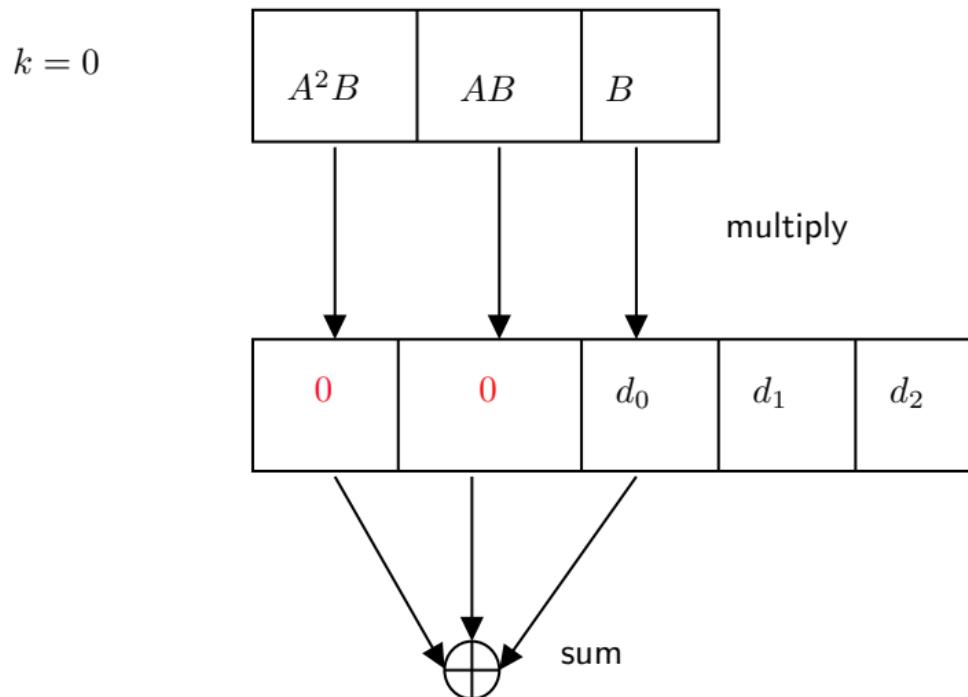
Convolutions can be parallelized:

- $x_1 = Bd_0$
- $x_2 = ABd_0 + Bd_1$ (does not depend on x_1)
- $x_3 = A^2Bd_0 + ABd_1 + Bd_2$ (does not depend on x_1, x_2)
- ...

Given the input sequence d_0, d_1, \dots, d_{T-1} , the whole trajectory x_1, x_2, \dots, x_T can be computed in one shot once the kernel \mathcal{K} is materialized.

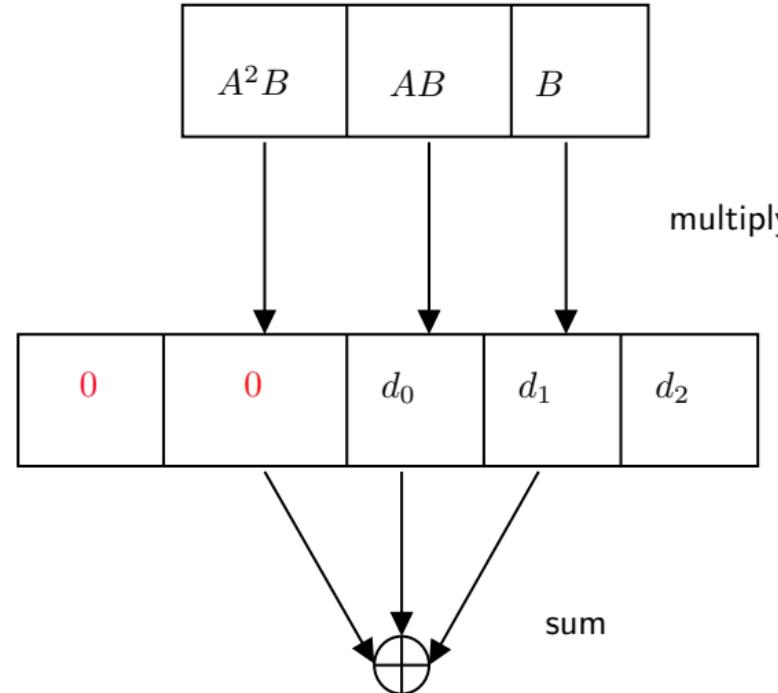
Computational efficiency

$$(\mathcal{K} \star d)_0 = \sum_{j=0}^2 \mathcal{K}_j d_{-j} = \mathcal{K}_0 d_0 + \mathcal{K}_1 \mathbf{d}_{-1} + \mathcal{K}_2 \mathbf{d}_{-2}$$



$$(\mathcal{K} \star d)_1 = \sum_{j=0}^2 \mathcal{K}_j d_{1-j} = \mathcal{K}_0 d_1 + \mathcal{K}_1 d_0 + \mathcal{K}_2 d_{-1}$$

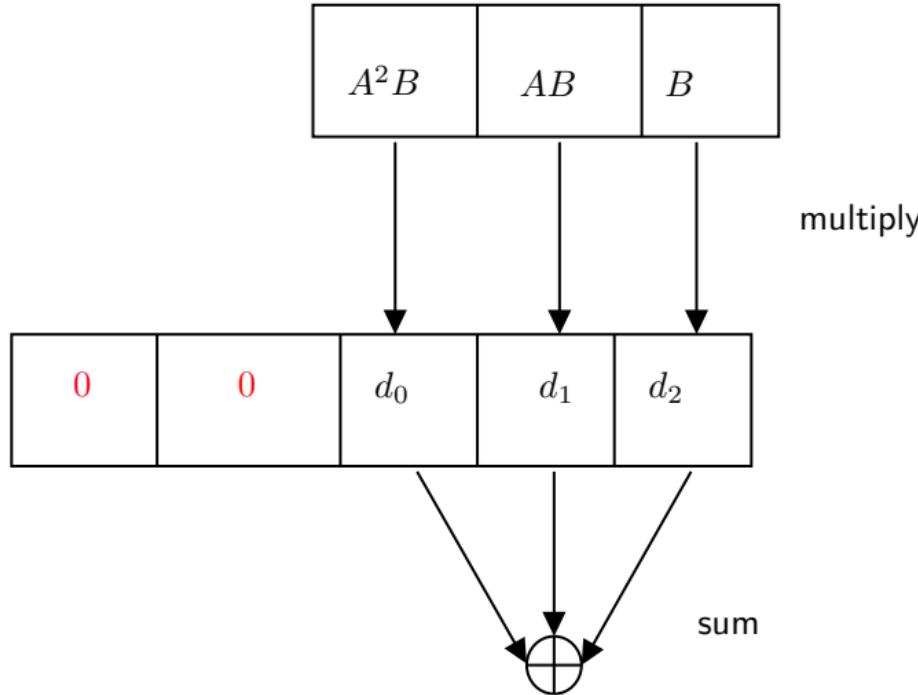
$$k = 1$$



Computational efficiency

$$(\mathcal{K} \star d)_2 = \sum_{j=0}^2 \mathcal{K}_j d_{2-j} = \mathcal{K}_0 d_2 + \mathcal{K}_1 d_1 + \mathcal{K}_2 d_0$$

$$k = 2$$



Convolutional form and parallel scan

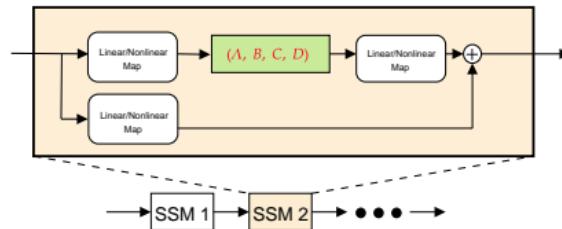
- The elements of $\mathcal{K} = [B, AB, \dots, A^{T-2}B, A^{T-1}B]$ can be computed in parallel.
- This can be done via parallel scan: given a binary associative operator \bullet (i.e. $(a \bullet b) \bullet c = a \bullet (b \bullet c)$) and a sequence $[a_1, a_2, \dots, a_L]$ a scan operation (sometimes referred to as all-prefix-sum) returns the sequence

$$[a_1, (a_1 \bullet a_2), \dots, (a_1 \bullet a_2 \bullet \dots \bullet a_L)]$$

- The complexity of simulating a DT LTI system for a sequence of inputs of length T is $\mathcal{O}(T \log_2 T)$ times the complexity of the product $\Lambda \cdot \Lambda$. (for Λ diagonal it scales as $\mathcal{O}(n_\lambda)$, for non-diagonal matrices its complexity is $\mathcal{O}(n_\lambda^{2.3737})$).

Is linear enough? Scaffolding to the rescue

- Expressiveness of linear systems is enhanced by pre- and post-processing the input/output via static linear and non-linear transformations. This process is called **scaffolding**.



- All maps are static and applied element-wise. Non-linearities should be Lipschitz continuous to preserve stability properties.

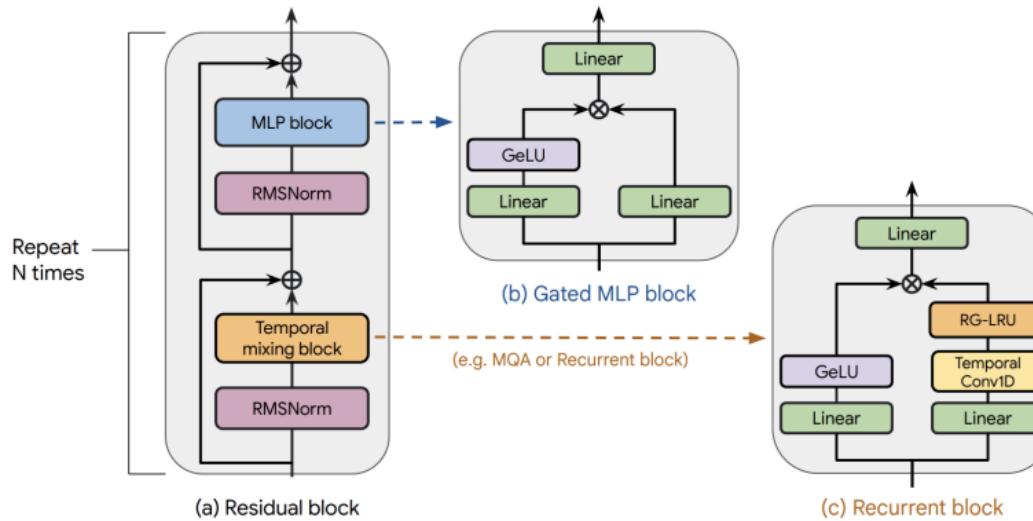


Figure: Griffin Scaffolding.

A taxonomy of SSMs

Model	Features				
	Parametrization	Discretization	Structure	Implementation	Scaffolding
S4 [12]	LTI	Bilinear	SISO	Convolution and Recurrence	MLP / H3
S4D [18]	LTI	Exact	SISO	Convolution and Recurrence	MLP / H3
S5 [19]	LTI	Exact / Bilinear	MIMO	Parallel Scan	MLP / H3
LRU [20]	LTI	None	MIMO	Parallel Scan	MLP / H3
S6 [10]	LTV	Exact	MIMO	Custom Parallel Scan	Mamba
RG-LRU [21]	LTV	None	MIMO	Custom Parallel Scan	Mamba / Hawk / Griffin

Model	LRA Task [%]						
	ListOps	Text	Retrieval	Image	Pathfinder	Path-X	avg.
Random	10.00	50.00	50.00	10.00	50.00	50.00	36.67
Transformer [2] (paper results)	36.37	64.27	57.46	42.44	71.40	FAIL	53.66
S4 [12] (paper results)	59.60	86.82	90.90	88.65	94.20	96.35	86.09
S4D [18] (paper results)	60.52	87.34	91.09	88.19	93.96	92.80	85.65
S5 [19] (paper results)	62.15	89.31	91.40	88.00	95.33	98.58	87.46
LRU [20] (paper results)	60.20	89.40	89.90	89.00	95.10	94.20	86.30
S6 [10]	38.02	82.98	72.14	69.82	69.26	67.32	66.59
RG-LRU [21]	32.34	71.75	66.58	61.15	73.38	69.53	62.45

Figure: SSMs performance.

- What if we want to impose something "more" than stability and we want a prescribed \mathcal{L}_2 -bound?

L2RU: SSMs with prescribed \mathcal{L}_2 -bound γ ¹

- ① We can parametrize DT LTI systems with prescribed \mathcal{L}_2 -bound γ using the Real Bounded Lemma:

$$g(A, B, C, D) \text{ has } \mathcal{L}_2\text{-gain } \gamma \iff P \succ 0, \begin{bmatrix} A^\top PA - P + C^\top C & A^\top PB + C^\top D \\ B^\top PA + D^\top C & B^\top PB + D^\top D - \gamma^2 I \end{bmatrix} \prec 0$$

- ② Then, we can use the knowledge of the Lipschitz constant of each nonlinearity and encoder/decoder matrices to find a free parametrization such that the SSM operator \mathcal{M} has prescribed bound $\hat{\gamma}$

L2RU parametrization: $\psi : \theta \in \mathbb{R}^m \mapsto \{\underbrace{\{A_i, B_i, C_i, D_i\}}_{g_i}, \underbrace{\{\xi_i\}}_{\sigma_i}\}_{1 \leq i \leq r}, E, H\}$ s.t. $\mathcal{M}_{\psi(\theta)}$ has \mathcal{L}_2 -bound $\hat{\gamma}$.

- Find out more at <https://arxiv.org/abs/2503.23818>

¹Free Parametrization of \mathcal{L}_2 -bounded State Space Models, Leonardo Massai, Giancarlo Ferrari-Trecate, 2025