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State Space Models

What is an SSM?

An SSM is an input/output operator defined through a dynamical system consisting of multiple layers, each

composed of

® A discrete-time LTI system. It can be discretized from a CT or directly modeled in DT.

® A pre- and post-processing of its input and output, typically involving static nonlinear function (Wiener
models). All the processing done around the LTI system is also known as the SSM scaffolding.
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State Space Models

encoder

]
Lipschitz :
T

i

1

1

] Ii1 = Al + Bdy gl bounded

] 2 = Chy +Ddg. non-iinearity | g
1

! X . !

i skip connection |
l

decoder

Scaffolding
LTI system
SSL

SSM structure

Input/output operator M :u € L% —y € L™V
® LTI system:

9d(A,B,C,D) - {

with h € R™, d,z € R™. A common requirement is that A must be Schur, ensuring system stability (ISS).

® The output of g is fed to a static nonlinearity that belongs to a family of parametrized functions

o¢ : R" — R"™ depending on the parameter £ € R™.

® The scaffolding commonly includes a linear encoder/decoder defined by the matrices
3 EGRea™, H € R"*™ These are just linear transformations of the form y = Fu.

Tpt1 = Axp + Bdi, 20 =0
2K = Cxzy + Ddy




The LRU =PrL
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LRU
® For a fixed number of layers » € N, the LRU is a parametrized operator My : u € L™ — y € L™ with:

OepP= {{Ai,Bi,Ci,Di,gi}lgigT,E,H}

® An LRU ? with r € N layers processes its input u in the following manner:

encoder yo = Fu

(

(SSL) vi=0i(gi(yi-1)) +yi-1, 1<i<r
(decoder) y = Hy,

@Resurrecting Linear Recurrences, Orvieto et al., 2023
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LTI Systems =PrL

Why LTI systems?

@ Output can be computed both recursively (during inference) and via convolution:
2k = Zk ' CA* " 'Bd, + Ddy, allowing parallelization and fast computing during training (parallel scan).
@ Properties such as stability are easy to enforce.

Enforcing stability: complex diagonal parametrization

® \We want to parametrize Schur matrices A € R™»*"™» A convenient way to do it is to use diagonal
complex-valued matrices.

® Almost all matrices A € R™»*"™ are diagonalizable over C.

® Given a dlagonallzable A we can write A= PAP~! and construct the similar system with state
& := P 'ap, B :== P7'B and output %, = C%) + Ddy = Cxy + Ddy = zi, where C := CP.

® This implies that instead of learning (A4, B, C, D), one can learn (A, B,C, D), where A, B, C are
complex-valued, and A is diagonal.
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LTI systems =PrL

A formulation with A with conjugate pairs

® When A is of even dimension with complex conjugate pairs of eigenvalues, one can write:
A 3 B L

A = - B = — C = C j C

{ conj(A)} ’ { conj(B) ] ’ [ conj(C)]

where A € C™»*"x B e C™ X" C € C***">, while D € R"**", with n, = T

® Substituting you get

Th41 _ Az n Bu_k (1)
conj(Zr+1)| | conj(AZy) conj(B)uy
26 = CTp + conj(éik) + Duy, = 2Re(éik) + Duy, (2)

® We can train the smaller subsystem (A, B,C) and compute the output as z; = 2Re(Zx) + Dus for further
reduction of the computational burden without any approximations.

® Parameterize A = diag (M1, ..., \n, ) With \; = e~ ¢%" ensuring Al = e <1 Vyu; eR.
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Initialization Strategies

® All parameterizations aim to ensure that |A;| < 1 and |)\;| &= 1 to push the system towards marginal stability.
Intuitively, this allows the system to have long-range memory and prevents the signal from past inputs from
quickly dying out.

Towards marginal stability for long dependencies

® The idea is to constrain the eigenvalues to lie on a disc inside the unitary circle and close to the stability
boundary.

® Let ui,uz be independent uniform random variables on the interval [0,1]. Let 0 < Tmin < rmax < 1.
Compute v = —% log (u1 (rfnax — r,zmn) + rfmn) and a = 2wu2. Then exp(—v + ia) is uniformly distributed

on the ring in C between circles of radii 7min and Tmax.

Imin = 0.4, rmax=0.9
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Recap SSM (LRU)
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® | Tl system in the SSL layer:
_ —ell 044
Tr41 = A(I,'k + Bdk € €
Tk+1 = Ahy + Bdg 5 o0 ith A
From t zZ =0z with A =
k k
2k = Chy, + Ddy,

where A € C™ X" B € C™ %™ ('€ C™*™, while D € R™*™ with ny = 2

® Training parameters: © = {{]\j,B]‘,éj,Dj,Ei}je{l o
® Hyperparameters: n,ng,r, hyper(co)

8 3.4.2025

Hn :
e—e A een'AZ



Computational efficiency

k
Thy1 = Axp + Bdy, g =0 -
Tpa1 = A'Bdy_; = (Kxd),, k=0,...,T—1
{zk = Cy + Ddy, o ;o kg = (Koxd)e
AT=2B, AT~1B] is called kernel and the convolution operator for causal

where K = [B,AB, ...,
sequences f, g of length T is defined as

T—1 k
(f*9k = figh—5 = figr—j (g:=0fori<0)
Jj=0 j=0

Convolutions can be parallelized:
® 1 = Bdp
® 15 = ABdy + Bdi (does not depend on x1)
A%Bdy + ABd; + Bds (does not depend on 21, 2)

[ ]
Given the input sequence dy, d1, . ..,dr—_1, the whole trajectory z1, 25 ...,
shot once the kernel K is materialized.
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Computational efficiency

2
(’C*d)o = Z’de_j = Kodo + ,C1(171 + ’CQd,Q

=0

k=0
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Computational efficiency

2
(’C*d)l = Z’del—j = ’Codl + ]Cld() + K2d71

§=0
k=1
A’B AB B
multiply
\ 4 A 4 \ 4
0 0 do d; do
sum

xr9 = ABdy + Bd;
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Computational efficiency

2
(’C*d)g = Z’de2—j = ’Codg + ]Cldl + Kgdo

§=0
=2
b A’B AB B
multiply
\ 4 A 4 \ 4
0 0 dy dy ds
sum

3 = A2Bdy + ABd; + Bd,
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Convolutional form and parallel scan

® The elements of I = [B, AB,..., AT’QB,AT’IB] can be computed in parallel.

® This can be done via parallel scan: given a binary associative operator e (i.e. (¢ ®b)ec=ae(bec) ) and a
sequence [a1,az,...,ar] a scan operation (sometimes referred to as all-prefix-sum) returns the sequence

[a1,(a10a2),...,(a1eaze...0aL)]

® The complexity of simulating a DT LTI system for a sequence of inputs of length T is O (T'log, T') times the

complexity of the product A - A. (for A diagonal it scales as O (ny), for non-diagonal matrices its complexity
is O (n§'3737)).
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Is linear enough? Scaffolding to the rescue

® Expressiveness of linear systems is enhanced by pre- and post-processing the input/output via static linear and
non-linear transformations. This process is called scaffolding.

® All maps are static and applied element-wise. Non-linearities should be Lipschitz continuous to preserve
stability properties.
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Scaffoldings
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Figure: Griffin Scaffolding.
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SSMs architecture
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A taxonomy of SSMs

Features

Model

Parametrization  Discretization  Structure Implementation Scaffolding
S4 [12] LTI Bilinear SISO Convolution and Recurrence MLP / H3
S4D [18] LTI Exact SISO Convolution and Recurrence MLP / H3
S5 [19] LTI Exact / Bilinear MIMO Parallel Scan MLP / H3
LRU [20] LTI None MIMO Parallel Scan MLP / H3
S6 [10] LTV Exact MIMO Custom Parallel Scan Mamba

RG-LRU [21] LTV None MIMO Custom Parallel Scan

Mamba / Hawk / Griffin

16
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Performance
Model LRA Task [%]
ListOps Text Retrieval 1Image Pathfinder Path-X avg.

Random 10.00 50.00 50.00 10.00 50.00 50.00 36.67
Transformer [2] (paper results) 36.37 64.27 57.46 42.44 71.40 FAIL 53.66
S4 [12] (paper results) 59.60 86.82 90.90 88.65 94.20 96.35 86.09
S4D [18] (paper results) 60.52 87.34 91.09 88.19 93.96 92.80 85.65
S5 [19] (paper results) 62.15 89.31 91.40 88.00 95.33 98.58 87.46
LRU [20] (paper results) 60.20 89.40 89.90 89.00 95.10 94.20 86.30
S6 [10] 38.02 82.98 72.14 69.82 69.26 67.32 66.59
RG-LRU [21] 32.34 71.75 66.58 61.15 73.38 69.53 62.45
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SSMs with prescribed £,-bound ~ “PrL

® What if we want to impose something "more" than stability and we want a prescribed L2-bound?

L2RU: SSMs with prescribed £3-bound ~ *
@ We can parametrize DT LTI systems with prescribed L2-bound  using the Real Bounded Lemma:

ATPA—-P+CTC ATPB+C™D

g(A, B,C, D) has Ly-gainy <— P >0, BTPA+DTC B PB+DTD -1

@ Then, we can use the knowledge of the Lipschitz constant of each nonlinearity and encoder/decoder matrices
to find a free parametrization such that the SSM operator M has prescribed bound 4

L2RU parametrization: 9 : 0 € R™ {{Az, Bi,Ci,D;, & }1§i§r, E, H} s.t. Mw(e) has Lo-bound 4.
—————

9i T4

® Find out more at https://arxiv.org/abs/2503.23818

L Free Parametrization of Lo-bounded State Space Models, Leonardo Massai, Giancarlo Ferrari-Trecate, 2025
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